12.3 Videos Guide

12.3a

- Definitions of the dot product: Let $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$
 - $\circ \quad \mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$
 - Exercise:
 - Find the dot product $\mathbf{a} \cdot \mathbf{b}$ of $\mathbf{a} = \langle 2, -4, 7 \rangle$ and $\mathbf{b} = \langle -\frac{1}{2}, 5, 13 \rangle$.
 - $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$, where θ is the angle between \mathbf{a} and \mathbf{b}
 - Exercise:
 - Find the angle between **a** and **b** from the previous exercise.
- Orthogonal vectors If the angle between **a** and **b** is $\theta = 90^\circ$, then $\mathbf{a} \cdot \mathbf{b} = 0$

12.3b

• Direction cosines: let α , β , and γ be angles made between a vector $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and the *x*-, *y*-, and *z*- axes, respectively

$$\circ \quad \cos \alpha = \frac{a_1}{|\mathbf{a}|}$$
$$\circ \quad \cos \beta = \frac{a_2}{|\mathbf{a}|}$$
$$\circ \quad \cos \gamma = \frac{a_3}{|\mathbf{a}|}$$

12.3c

• Scalar projection of **b** onto **a**

$$\circ \quad \operatorname{comp}_{\mathbf{a}}\mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}$$

• Vector projection of **b** onto **a**

$$\circ \quad \operatorname{proj}_{\mathbf{a}}\mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2} \mathbf{a}$$

12.3d

Exercise:

Find the scalar and vector projections of b onto a.
a = (-1, 4, 8), b = (12, 1, 2)